If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-4x-3360=0
a = 2; b = -4; c = -3360;
Δ = b2-4ac
Δ = -42-4·2·(-3360)
Δ = 26896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{26896}=164$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-164}{2*2}=\frac{-160}{4} =-40 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+164}{2*2}=\frac{168}{4} =42 $
| -10j-(-11j)=11 | | 12(x+2)=-3(x-8) | | 9y-7y-1=7 | | 3x+2.85=30.75 | | -q=3 | | 4(3+4x)=19x+9-3x+3 | | 6+-3v=3 | | 8g+-5g+-4=-3+3g | | -2(q-7)=-6 | | 10-10x−10=−10x+1010 | | 1/3(x-2)=15 | | 15x+5=6x-4 | | x2+1=31 | | 80=86+(x-2)+2)/3 | | 2(12-x)=-2(x-17)-10 | | 28-11x=13+4x | | -(q+15)=-1 | | -6p-12p=-18 | | -46=g-2/2 | | 10x=40+5x | | 13=j/4+12 | | 4p-2p+4p+2=14 | | N-6=n+-10 | | 2/3(6c-18)+18=-3/4(8c+32) | | N-6=n+10 | | 2g-12g=-14 | | 0.5=0.4y-0.25× | | 6=-3(x×2) | | k-19k-13k=-10k | | k-19k—13k=-10k | | q+2/5=2q=11/7 | | S=1-|x-4|+50 |